
Международна научна конференция “УНИТЕХ’04” – Габрово I-266

INTERNATIONAL SCIENTIFIC CONFERENCE

18 – 19 November 2004, GABROVO

A NEW APPROACH TO DICTIONARY-BASED LOSSLESS COMPRESSION

Altan MESUT Aydın CARUS
 altanmesut@trakya.edu.tr aydinc@trakya.edu.tr
 Computer Engineering Department Computer Engineering Department
 Trakya University, TURKEY Trakya University, TURKEY

Abstract

In this paper, a new approach on dictionary-based lossless compression method is introduced. In our two-pass
compression algorithm (SSDC), most frequently used two character blocks (digrams) are found in source file in the first-pass,
and they are inserted into free spaces in ASCII table which are unused by the document in the second-pass. In our multi-pass
algorithm (RSSDC), the two-pass algorithm is called particular number of times recursively. In each iteration, “total free
space / total number of iteration” of the free spaces in the table is filled. In order to increase compression ratio, we also
extend the ASCII table to 512 characters, by increasing bits per character from 8 to 9.

Keywords: Digram Coding, Huffman Coding, LZ77, LZW, lossless compression.

INTRODUCTION

Data compression techniques are widely used
to transfer data faster on a network and store data
in less capacity on a hard drive.

Lossy data compression reduces the size of the
source data by permanently eliminating certain
information, especially redundant information.
When the file is uncompressed, only a part of the
original information is retrieved. Lossy data
compression is generally used for image, video
and sound, where a certain amount of information
loss will not be detected by most users.

Lossless data compression is used when it is
important that the original and the decompressed
data should be exactly identical, or when no
assumption can be made on whether certain
deviation is uncritical. Typical examples are text
documents, executable programs and source
code.

There are two types of lossless compression
techniques; statistical-based and dictionary-based.
In statistical-based techniques, compression takes
place based on the frequency of input characters.
The most well known statistical-based techniques
are; Huffman Coding [1, 2], and Arithmetic
Coding [3, 6]. Dictionary-based techniques
replace input strings with earlier identical input.
We can divide dictionary-based techniques into
three categories. In static dictionary scheme, the
dictionary is the same for all inputs. In semi-static
dictionary scheme, distribution of the symbols in
the input sequence learned in the first-pass,

compression of the data made in the second-pass
by using a dictionary derived from the
distribution learned. In adaptive (dynamic)
dictionary scheme, the dictionary is a portion of
the previously encoded sequence. Static
dictionary is most appropriate when considerable
prior knowledge about the source is available. If
there is not sufficient prior knowledge about the
source, using adaptive or semi-static schemes is
more effective. Most adaptive dictionary-based
techniques have their roots in two landmark
papers by Jacob Ziv and Abraham Lempel in
1977 [8] and 1978 [9]. The approaches based on
the 1977 paper are said to belong to the LZ77
family, while the approaches based on the 1978
paper are said to belong to the LZ78 family. The
most well known modification of LZ78
Algorithm is Terry Welch's LZW Algorithm [5].

DIGRAM CODING

Digram coding is a static dictionary technique
that is less specific to a single application. In
digram coding, the dictionary consists of all
letters of the source alphabet followed by as
many pairs of letters, called digrams, as can be
accommodated by the dictionary [4].

The Digram Encoder: Reads a two-character
input and searches the dictionary to see if this
input exists in the dictionary. If it does, the
corresponding index is encoded and transmitted.
If it does not, the first character of the pair is
encoded. The second character of the pair then

Международна научна конференция “УНИТЕХ’04” – Габрово I-267

becomes the first character of the next digram the
encoder reads another character to complete the
digram, and the search procedure is repeated.

SEMI-STATIC DIGRAM CODING (SSDC)

We have developed a semi-static compression
algorithm based on digram coding. It runs in two-
pass by the nature of semi-static dictionary
scheme.

In the first-pass of our two-pass digram coding
algorithm, all of the individual characters that are
used in the source file are found and they are
added to the dictionary. In addition, all of the
pairs of characters and the number of their
occurrence in the file are found and recorded.
Then, the pairs are sorted according to number of
their occurrence. If the source file contains n
individual characters, and the dictionary size is d,
then the number of digrams that can be added to
the dictionary is d-n. Thus, the first d-n pairs that
are the most frequently occurred in the file are
chosen, and the rest of the dictionary is filled with
them. Before the second-pass, the n value is
written to the beginning of the destination file.
After the n value, the dictionary that contains n
individual characters and d-n digrams is written.

START

Find the number of individual characters
used in the source file and write this value

to the beginning of the destination file

Sort the used characters from most
frequently used to least frequently used and

add them into the dictionary in this order

Find the repeat number of the pairs and sort
them in descending order

Fill the free space in the dictionary with the
most frequently used pairs

END

Search and replace procedure

Open source and destination files

Close the files.

Add the dictionary to the destination file

Figure 1. Flowchart of SSDC

In the second-pass, our search and replace
procedure do what the digram encoder do. The
procedure starts from beginning of the source file
and reads two-character to form the digram. It
searches the digram in the dictionary. If the
digram exists in the dictionary, the corresponding
index is written to the destination file. If it does
not, the first character of the pair is written. The
flowchart of this algorithm is shown in Figure 1.

The one-pass decompression algorithm is very
simple and it runs much faster then the
compression. Firstly, it reads a character from the
beginning of the compressed file. This character
represents the individual characters in the
uncompressed file (the n value). Then it reads n
individual characters and places them in the
beginning of the dictionary. Later, it reads two
characters d-n times for getting digrams, and
places them into the dictionary. After the
dictionary is regained, the reverse of the search
and replace procedure is done for decompression.

RECURSIVE SEMI-STATIC DIGRAM
CODING (RSSDC)

We have developed another algorithm based
on our semi-static digram coding algorithm. In
this second algorithm, we used a recursive
approach to increase compression ratio. This
multi-pass algorithm is not filled all of the free
space in the dictionary in one pass. The free space
is divided into the number of iterations, and each
iteration fills its own free space. A digram, which
is added in the nth iteration, will become a
character in (n+1)th iteration.

For example, suppose the source file contains
86 individual characters and the dictionary size is
256. If the number of iterations is 10, each
iteration adds (256 − 86) / 10 = 17 digrams in the
dictionary. After the first iteration, the destination
file contains 86 + 17 = 103 individual characters.
For example, if “_the” is one of the most repeated
character groups in the source file, “_t” and “he”
pairs might be inserted in 87-103 interval of the
dictionary. Suppose “_t” placed in 90, and “he”
placed in 88. In the second iteration, the “90+88”
pair might be one of the most frequently used
digram and can be placed between 104 and 120.
The flowchart of this algorithm is shown in
Figure 2.

In addition to the decompression algorithm
described in semi-static digram coding, this time,
the reverse of the search and replace procedure is
done recursively, as shown below:

Международна научна конференция “УНИТЕХ’04” – Габрово I-268

START

Sort the used characters from most
frequently used to least frequently used and

add them into the dictionary in this order

Change character values in the source file
with its index in the dictionary and write

them in a temporary file

Find the repeat number of the pairs and
sort them in descending order

Did the user
give the iteration

number?
iteration = 10 iteration = input

N Y

Add “free space in dictionary / iteration”
of the most frequently used pairs into

the dictionary

iteration =
iteration - 1

is
iteration = 1

?

N

Y

Search and replace procedure

Close the files.
Delete the temporary file.

Rename destination file name
to temporary file name.

Open temporary and destination files

Open temporary and destination files

Write n value to the beginning of the
destination file.

Add the dictionary to the destination file

Add the entire temporary file to the
destination file

Close the files.
Delete the temporary file.

END

Find the number of individual characters
used (=n) in the source file

Open source and destination files

Figure 2. Flowchart of RSSDC

Reverse_Search_And_Replace(int source, file dest){
 if (source < n){
 - source is an individual character -
 write the dictionary meaning of
 the source to dest
 } else {
 - source is a digram -
 Reverse_Search_And_Replace (
 1st character of the source, dest);
 Reverse_Search_And_Replace (
 2nd character of the source, dest);
 }
}

Like SSDC decoder, RSSDC decoder is also a

one-pass coder and it works very fast.

PERFORMANCE OF THE ALGORITMS
In Table 1, we give the results of compressing

the fourteen commonly used files of the Calgary
Compression Corpus [7] with our algorithms. In
this table, ds represents dictionary size and i
represents total number of iterations used in
RSSDC. Compression efficiency is expressed as
output bits per input character. The Compression
time measurements were made on a computer
which has an Intel Pentium4 1.7 GHz processor
and 256MB of total RAM. CPU time is given
rather than elapsed time so the time spent
performing I/O is excluded.

The c codes of the other algorithms that are
used in this comparison are; for Huffman Coding
“codhuff.c” and for LZW “codlzw.c” both by
David Bourgin (1995), for Arithmetic Coding
“ari.cpp” by Mark Nelson (1996) and for LZ77
“prog1.c” by Rich Geldreich, Jr. (1993).

 Compressed
Size (bytes)

bits/
char

Comp.
Time (s)

Decomp.
Time (s)

Uncompressed 3.141.622 8,00

HUFFMAN 1.764.418 4,49 0.64 0.45
ARITHMETIC 1.713.128 4,36 1.09 1.19

LZW 1.521.341 3,87 0.59 0.34
LZ77 1.347.216 3,43 0.88 0.13

SSDC, ds=256 2.003.492 5,10 1.00 0.14
SSDC, ds=512 1.936.050 4,93 1.58 0.28

RSSDC, ds=256, i=5 1.736.729 4,42 4.22 0.16
RSSDC, ds=256, i=10 1.715.404 4,37 6.73 0.16
RSSDC, ds=256, i=15 1.709.426 4,35 9.33 0.16
RSSDC, ds=256, i=20 1.708.191 4,35 11.58 0.16
RSSDC, ds=512, i=5 1.493.825 3,80 9.61 0.30

RSSDC, ds=512, i=10 1.461.175 3,72 14.16 0.30
RSSDC, ds=512, i=15 1.453.582 3,70 18.64 0.30
RSSDC, ds=512, i=20 1.444.759 3,68 24.47 0.30

Table 1. Results of compressing Calgary Corpus

The table shows that compression improves
with increasing dictionary size and total number
of iterations. However, while the compression
ratio increases, the compression time also
increases.

Международна научна конференция “УНИТЕХ’04” – Габрово I-269

Like other dictionary-based algorithms, the
decompression speed of our algorithms is faster
than the compression speed. It is clearly seen that,
the decompression time does not depend on to the
total number of iterations in the compression.
Because, no matter how much iteration used in
the compression, the decompression is always
done in one-pass.

When we look at the SSDC results, we can see
that the compression efficiency of non-recursive
approach is not good, but the algorithm runs fast.
SSDC cannot compress more than 50% by the
nature of its structure. For example, the “pic” file
is highly compressible because of large amounts
of white space in the picture, represented by long
runs of zeros. However, SSDC cannot compress
the “pic” file of the Calgary Corpus more than
50% (see Appendix). It is obvious that, if
trigrams used instead of digrams in SSDC,
compression ratio will be increased.

Because of all the ASCII characters are used in
geo, obj1 and obj2 files, if we use the dictionary
size 256, the algorithm cannot find a free space to
fill. Thus, the use of 256 causes an expansion
instead of compression (see Appendix).

CONCLUSION
The approach presented in this paper can be

used when fast decompression is necessary. For
example, it can be used to prepare a setup for
software. The software files are compressed once
when the setup is prepared, but later, the
decompression is made many times when
installation of the software. Therefore, in this
kind of situations, the decompression speed is
more important than the compression speed, and
this is because the decompression speed of
RSSDC algorithm is valuable.

By making the following improvements to
these algorithms, the compression time can be
decreased and the compression ratio can be
increased.

• Compression speed of these algorithms can
be decreased by using more efficient
searching and sorting algorithms.

• Compression ratio can be increased by
using trigrams or tetragrams instead of
digrams. However, in this situation,
compression time will be decreased.

• Elimination of unnecessary items from the
dictionary may increase compression ratio,
but it may also increase compression time.
For example, if the algorithm compresses
“_the” with “_t” + “he”, the pair in the
middle “th” can be removed if it is not used
many times in other character groups.

• A part of the dictionary can be made static.
For example, 96 printable characters and 32
most frequently used pairs in English
language can be placed in 0-127 interval of
the dictionary. Later, the first-pass of our
algorithm will be filling the rest of the
dictionary. By doing this improvement
compression time might decrease, but
compression ratio also decreases for some
source files, which include digrams that do
not match static part of the dictionary.

REFERENCES

[1] D. A. Huffman. A Method for the Construction
of Minimum-Redundancy Codes. Proceedings of
IRE, 40(9):1098-1101, September 1952.

[2] D. E. Knuth. Dynamic Huffman Coding. J.
Algorithms, 6(2):163-180, June 1985.

[3] A. Moffat, R.M. Neal, I.H. Witten. Arithmetic
Coding Revisited. ACM Transactions on
Information Systems, 16:256-294, 1995.

[4] K. Sayood. Introduction to Data Compression.
San Francisco, California, Morgan Kaufmann,
1996.

[5] T. A. Welch. A Technique for High-Performance
Data Compression. IEEE Computer, 17(6):8-19,
June 1984.

[6] I. H. Witten, R.M. Neal, R.J. Cleary. Arithmetic
Coding for Data Compression. Communications
of the ACM, 30:520-540, 1987.

[7] I. H. Witten and T. Bell. The Calgary/Canterbury
text compression corpus. Anonymous ftp from
ftp.cpsc.ucalgary.ca:
/pub/text.compression.corpus/

[8] J. Ziv, A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions
on Information Theory, IT-23(3):337-343, May
1977.

[9] J. Ziv, A. Lempel. Compression of Individual
Sequences via Variable-Rate Coding. IEEE
Transactions on Information Theory, IT-
24(5):530-536, September 1978.

Международна научна конференция “УНИТЕХ’04” – Габрово I-270

APPENDIX

File
Name

Uncompressed
size (byte)

SSDC
ds=256

SSDC
ds=512

RSSDC
ds=256

i=5

RSSDC
ds=256

i=10

RSSDC
ds=256

i=15

RSSDC
ds=256

i=20

RSSDC
ds=512

i=5

RSSDC
ds=512

i=10

RSSDC
ds=512

i=15

RSSDC
ds=512

i=20

bib 111.261 67.461 67.142 58.458 56.380 56.241 56.012 53.953 51.549 50.411 50.469
book1 768.771 439.511 444.416 420.813 414.990 413.792 414.530 390.308 384.352 383.979 382.582
book2 610.856 367.554 368.193 354.952 353.072 350.823 350.982 323.564 321.901 322.910 321.220
geo 102.400 102.657 75.696 102.657 102.657 102.657 102.657 64.991 63.631 63.295 63.174

news 377.109 248.074 242.665 242.860 240.882 241.033 240.358 226.582 222.835 221.055 218.376
obj1 21.504 21.761 17.205 21.761 21.761 21.761 21.761 13.993 13.600 13.489 13.407
obj2 246.814 247.071 184.515 247.071 247.071 247.071 247.071 154.122 150.938 149.973 149.614

paper1 53.161 32.838 33.101 31.193 30.811 30.761 30.679 28.298 27.548 27.504 27.312
paper2 82.199 47.411 48.671 45.023 44.677 44.211 44.176 40.984 40.151 40.141 39.890

pic 513.216 271.103 296.006 78.145 71.493 70.328 69.731 74.715 66.764 65.644 65.304
progc 39.611 25.215 25.410 23.020 22.184 22.063 22.008 20.871 20.407 20.080 19.720
progl 71.646 41.959 42.608 35.765 34.758 34.589 34.630 32.155 30.759 30.110 29.512
progp 49.379 30.190 30.523 24.546 23.644 23.163 23.088 21.564 20.436 19.573 19.366
trans 93.695 60.687 59.899 52.443 51.024 50.933 50.508 47.056 45.635 44.750 44.141
Total 3.141.622 2.003.492 1.936.050 1.738.707 1.715.404 1.709.426 1.708.191 1.493.156 1.460.506 1.452.914 1.444.087

Compression Time 1.00s 1.58s 4.22s 6.73s 9.33s 11.58s 9.61s 14.16s 18.64s 24.47s
Decompression Time 0.14s 0.28s 0.16s 0.16s 0.16s 0.16s 0.30s 0.30s 0.30s 0.30s

Detailed results of compressing Calgary Corpus with SSDC and RSSDC

File
Name

Uncompressed
size (byte)

Huffman
Coding

Arithmetic
Coding LZW LZ77

bib 111.261 72.941 72.789 60.307 47.070
book1 768.771 438.577 436.883 419.111 393.448
book2 610.856 368.521 364.720 325.274 263.106
geo 102.400 73.084 72.400 79.287 83.544

news 377.109 246.606 244.471 231.578 183.705
obj1 21.504 16.584 16.038 13.684 12.155
obj2 246.814 194.635 187.294 134.562 101.840

paper1 53.161 33.550 33.120 28.960 22.776
paper2 82.199 47.830 47.535 42.705 37.073

pic 513.216 106.948 74.804 65.842 118.912
progc 39.611 26.111 25.920 21.143 16.494
progl 71.646 43.181 42.619 30.499 21.978
progp 49.379 30.416 30.209 21.502 15.137
trans 93.695 65.434 64.326 46.887 29.978

TOTAL 3.141.622 1.764.418 1.713.128 1.521.341 1.347.216

Compression Time 0.64s 1.09s 0.59s 0.88s
Decompression Time 0.45s 1.19s 0.34s 0.13s

Detailed results of compressing Calgary Corpus with Huffman Coding, Arithmetic Coding, LZW and LZ77

