
Международна научна конференция “УНИТЕХ’07” – Габрово I-357
‘

07

INTERNATIONAL SCIENTIFIC CONFERENCE
23 – 24 November 2007, GABROVO

WORDMATCH: WORD BASED STRING MATCHING
OVER COMPRESSED TEXTS

Aydın CARUS

aydinc@trakya.edu.tr
Computer Engineering Department

Trakya University – Edirne / TURKEY

H. Nusret BULUŞ
nusretb@trakya.edu.tr

Computer Engineering Department
Trakya University – Edirne / TURKEY

Altan MESUT
altanmesut@trakya.edu.tr

Computer Engineering Department
Trakya University – Edirne / TURKEY

Abstract
In this study, Word Based String Matching Algorithm named as WordMatch is represented. This algorithm makes pattern

matching over compressed natural language text documents with word based text compression algorithm that is developed by
us. Since the compression algorithm based on words, only word based string matching can be done on compressed text
documents. WordMatch uses the same static dictionaries with our word based text compression algorithm. The results of
pattern matching with WordMatch on compressed text documents and the results of pattern matching on the same text
document which is in uncompressed form are compared. It is seen that the results taken from WordMatch Algorithm is as
efficient as the results of other pattern matching algorithms.

Key Words: String Matching, Data Compression, Compressed Documents, Word Based.

INTRODUCTION

String matching is the process of finding the
exact locations that the pattern of length n is
included in the text of length m. Many
algorithms are developed in order to make
pattern matching. These algorithms start the
matching process from the beginning of the
pattern, from the end of the pattern, from the
middle the pattern or from any point of the
pattern and go through different directions. The
main idea of starting from the beginning, from
the end or from any point of the text which are
probably in the same sequence of the pattern is
making less attempts. Pattern matching on
compressed text is widely used like pattern
matching on normal text. Pattern matching on
compressed text studies that are LZW based,
Word based and byte oriented compression
algorithms have been represented [1,2,3,4]. In
addition to those, it is possible to use pattern
matching algorithms on compressed text which
are compressed by Word Based Huffman
algorithm [5].

Especially in recent years pattern matching on
large compressed text files becomes very
popular. It is obviously seen from the previous
studies that the performance of pattern matching
in compressed text is better than doing it after
decompressing. The WordMatch Algorithm that
we present in this study allows word based
pattern matching in word based compressed
files.

The next section explains the word-based
compression algorithm. The following section
explains The WordMatch Algorithm and after
that brief descriptions of the other pattern
matching algorithms are given. The following
section includes the test results of WordMatch
and other pattern matching algorithms.
Conclusion is given in the last chapter.

WORD BASED COMPRESSION

Word based lossless data compression
algorithm includes a static dictionary of the most
frequent words in texts that are written in
English. The words are grouped by their number
of the letters and stored in the dictionary. 2 bytes

Международна научна конференция “УНИТЕХ’07” – Габрово I-358

are coded for each word in compression process.
The first coded byte indicates the block of the
word and the second coded byte is the index of
the word in this block. In the compression
process, the first word of the text which will be
compressed is taken firstly and the space
character is added to the word, then the word is
searched in the dictionary. If the word is found in
the dictionary, the block number and the index in
this block are coded. If the word is not found in
the dictionary, the space character is dropped and
the word is written exactly between two escape
characters. The compression test results of this
algorithm shows that compression ratio of this
algorithm is approximately 50%.

WORD BASED PATTERN MATCHING
ALGORITHM

Word based pattern matching using
WordMatch Algorithm is possible on texts that
are compressed by the algorithm described
above. The matching algorithm is given in
Figure 1. While the word based pattern matching
is being done, first the pattern is searched in the
static dictionaries as it is done in the
compression algorithm. If the pattern is included
in the dictionary, the block number and the index
number is calculated like it is done in the
compression algorithm. After that, the first byte
in the compressed data set is read. If the byte is
an escape character, we move until the second
escape character is seen. If the character is not an
escape character, then this byte indicates the
block of the word coded by 2 bytes. In this case
this byte is compared with the block number of
the pattern. In addition to this, the index of the
pattern is compared with the following byte. If
these two bytes are same, then a location which
pattern occurs in the text is found. After that,
appropriate moves are done and so whole text is
searched. If the pattern is a word that is not
included in the dictionary, then the first
comparison process is done between the
characters that are following the escape character
and the character in the same sequence in the
pattern. This is done until the second escape
character which shows the end of the word is
read. In this way, compressed and uncompressed
words can be controlled and the exact locations
of the pattern in the text can be determined.

OTHER USED PATTERN MATCHING
ALGORTIHMS

• Raita Algorithm: This algorithm starts
comparison from the last character of the
pattern. If they are same then it compares
the first character of the pattern with the
character in the same location of the text. If
the second match occurs it compares the
character in the middle. If the matching
still continues, it makes the comparison
from the second character to the end [6].

• Boyer-Moore Algorithm: It has two pre-
processing phases which are bad character
shifting and good suffix shifting. It
compares characters from right to left. In
the searching phase, the moving step is the
maximum shifting values calculated in the
pre-processing phase [7].

• Berry-Ravindran Algorithm: It has a
pre-processing phase. It uses shift values
taken from a rule like bad character rule of
Boyer-Moore algorithm [8].

• Backward Oracle Algorithm: This
algorithm that uses last situation automats
takes the pattern backwards. On this
reverse pattern least suffix privilege xR is
found in the pre-processing phase. In
searching phase, algorithm divides the
characters in the window from right to left
by O(xR) automat as q0 will be the initial
state. This state continues until no more
definite transition left from the valid state
of automat to the valid character of the
window. At this point the longest prefix of
the pattern is the suffix of the part shaded
on the text. By using this information the
shift values on the automat is calculated
[9].

• Apostolico Giancarlo Algorithm:
Differently from the Boyer-Moore
algorithm, at the end of each try, it
remembers the longest suffix of the pattern
in the right end of the window. This
information is kept in the table named skip.
In addition to this, algorithm uses the bad
character and good suffix pre-processing
phases of Boyer-Moore Algorithm. Again
searching process is done from right to left.
In the case of mismatch, it uses good
suffix, bad character and skip values
differently from Boyer-Moore Algorithm [10].

Международна научна конференция “УНИТЕХ’07” – Габрово I-359

search the pattern in the dictionary
if pattern exists in word_based_dictionary{

compute block_number and index for pattern
while(not end of compressed text){

if(text[n] equals escape character){
n n+1
while(text[n]not equals to escape character)

 {
n n+1

}
n n+1

}
else if(text[n]equals to block_number and text[n+1] equals to index){
show the position
n n+2

 }
else{

 n n+2
}

 }
}

if pattern absent in word_based_dictionary{
 while(not end of compressed text){
 if(text[n] equals to escape character){
 chr_count 0
 pattern_pointer 0
 n n+1
 while(text[n] not equals to Escape character){
 if(text[n] equals to pattern[pattern_pointer]){
 chr_count +1
 pattern_pointer pattern_pointer+1
 }
 n n+1
 }
 if(lenght of pattern equals to chr_count){
 show the position
 n n+1
 }
 else{
 n n+2
 }
 }
}

Figure 1. WordMatch Algorithm

PATTERN MATCHING TESTS AND
RESULTS

The programs of WordMatch and the other
algorithms are written in C programming
language in .NET 2005 platform and compiled
in Release mode. The C code of other pattern
Matching algorithms that are used in our
comparison is developed by Christian Charras
and Thierry Lecroq [11]. A corpus about 30 MB
including stories, novels and texts in English in
different subjects is prepared for matching. The
corpus is compressed by using word based

compression algorithm to make the searching
process with WordMatch algorithm. This test is
performed with searching 100 words with
WordMatch in compressed corpus and with the
other matching algorithms in uncompressed
corpus. The values on the Figure 2 shows the
search time for 100 patterns.

According to Figure 2 which gives us the
matching times of WordMatch algorithm in
compressed corpus and the other algorithms in
original corpus;

Международна научна конференция “УНИТЕХ’07” – Габрово I-360

Figure 2. Search time results for 100 patterns (Milisecond)

• It is seen that WordMatch on compressed
text has a performance that is two times
better than the performance of Backward
Oracle Algorithm and six times better than
Apostolico Giancarlo Algorithm.

• Berry Ravindran algorithm has better
performance than WordMatch about 33%.
Raita algorithm has better than WordMatch
about 27 % and Boyer-Moore algorithm
has worse than WordMatch about 1 %.

CONCLUSION
 The WordMatch Algorithm that can search
words over texts which are compressed by our
word-based compression algorithm is presented
in this paper. If a string matching algorithm can
make string matching over compressed texts it
has a time advantage since decompression is not
necessary. Therefore if a string is searched in a
compressed text, WordMatch algorithm can be
better than all algorithms in Figure 2.

REFERENCES
[1] Kida T., Takeda M., Shinohara A., Miyazaki M.,

Arikava S., “Multiple pattern matching in LZW
compressed text”, Data Compression Conference
1998:103-112, 1999.

[2] Kida T., Takeda M., Shinohara A., Arikava S.,
“Shift-and approach to pattern-matching in LZW
compressed text”, in Combinatorial Pattern-
Matching 1999, Lecture Notes in Computer
Science 1645:1–1, 1999.

[3] Navarro G., Tarhio J., “LZgrep: A Boyer-Moore
String Matching Tool for Ziv-Lempel
Compressed Text”, Software Practice and
Experience, 35(12):1107-1130, 2005.

[4] Culpepper J. S., Moffat A., “Phrase-based pattern
matching in compressed text”, In Proceedings of
the 13th International Symposium on String
Processing and Information Retrieval (SPIRE
2006):337-345, 2006.

[5] Moura E., Navarro G., Ziviani N., Baeza-Yates
R., “Fast and Flexible Word Searching on
Compressed Text”, ACM Transactions on
Information Systems, 18(2):113-139, 2000.

[6] Raita, T., “Tuning the Boyer-Moore-Horspool
string searching algorithm”, Software - Practice &
Experience, 22(10):879-884, 1992.

[7] Boyer, R. S., Moore, J. S., “A fast string searching
algorithm”. Communications of the ACM. 20:762-
772, 1977.

[8] Berry, T., Ravindran S., “A fast string matching
algorithm and experimental results”, in
Proceedings of the Prague Stringology Club
Workshop`99, Collaborative Report DC-99-
05:16-26, 1999.

[9] Allauzen C., Crochemore M., Raffinot M.,
“Factor oracle: a new structure for pattern
matching”, in Proceedings of SOFSEM'99 Theory
and Practice of Informatics, J. Pavelka, G. Tel and
M. Bartosek ed., Milovy, Czech Republic, Lecture
Notes in Computer Science 1725:291-306,
Springer-Verlag, 1999.

[10] Apostolico A., Giancarlo R., “The Boyer-
Moore-Galil string searching strategies
revisited”, SIAM Journal on Computing,
15(1):98-105, 1986.

[11] Charras, C., Lecroq, T., Handbook of Exact
String Matching Algorithms, King's College
London Publications, 2004.

